4.7 Article

Variability of temperature and ozone in the upper troposphere and lower stratosphere from multi-satellite observations and reanalysis data

Journal

ATMOSPHERIC CHEMISTRY AND PHYSICS
Volume 19, Issue 10, Pages 6659-6679

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-19-6659-2019

Keywords

-

Funding

  1. Natural Science Foundation of Jiangsu Province [BK20170665]
  2. National Natural Science Foundation of China [41705023]
  3. Postdoctoral Science Foundation of China [2017M610319]

Ask authors/readers for more resources

Temperature and ozone changes in the upper troposphere and lower stratosphere (UTLS) are important components of climate change. In this paper, variability and trends of temperature and ozone in the UTLS are investigated for the period 2002-2017 using high-quality, high vertical resolution Global Navigation Satellite System radio occultation (GNSS RO) data and improved merged satellite data sets. As part of the Stratosphere-troposphere Processes And their Role in Climate (SPARC) Reanalysis Intercomparison Project (S -RIP), three reanalysis data sets, including the ERA-I, MERRA2 and the recently released ERAS, are evaluated for their representation of temperature and ozone in the UTLS. The recent temperature and ozone trends are updated with a multiple linear regression (MLR) method and related to sea surface temperature (SST) changes based on model simulations made with NCAR's Whole Atmosphere Community Climate Model (WACCM). All reanalysis temperatures show good agreement with the GNSS RO measurements in both absolute value and annual cycle. Interannual variations in temperature related to Quasi-Biennial Oscillation (QBO) and the El Nino-Southern Oscillation (ENSO) processes are well represented by all reanalyses. However, evident biases can be seen in reanalyses for the linear trends of temperature since they are affected by discontinuities in assimilated observations and methods. Such biases can be corrected and the estimated trends can be significantly improved. ERAS is significantly improved compared to ERA-I and shows the best agreement with the GNSS RO temperature. The MLR results indicate a significant warming of 0.2-0.3 K per decade in most areas of the troposphere, with a stronger increase of 0.4-0.5 K per decade at midlatitudes of both hemispheres. In contrast, the stratospheric temperature decreases at a rate of 0.1-0.3 K per decade, which is most significant in the Southern Hemisphere (SH). Positive temperature trends of 0.1-0.3 K per decade are seen in the tropical lower stratosphere (100-50 hPa). Negative trends of ozone are found in the Northern Hemisphere (NH) at 150-50 hPa, while positive trends are evident in the tropical lower stratosphere. Asymmetric trends of ozone can be found in the midlatitudes of two hemispheres in the middle stratosphere, with significant ozone decrease in the NH and increase in ozone in the SH. Large biases exist in reanalyses, and it is still challenging to do trend analysis based on reanalysis ozone data. According to single-factor-controlled model simulations with WACCM, the temperature increase in the troposphere and the ozone decrease in the NH stratosphere are mainly connected to the increase in SST and subsequent changes of atmospheric circulations. Both the increase in SSTs and the decrease in ozone in the NH contribute to the temperature decrease in the NH stratosphere. The increase in temperature in the lower stratospheric tropics may be related to an increase in ozone in that region, while warming SSTs contribute to a cooling in that area.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available