4.7 Article

Taming intrinsic localized modes in a DNA lattice with damping, external force, and inhomogeneity

Journal

PHYSICAL REVIEW E
Volume 99, Issue 5, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.99.052210

Keywords

-

Ask authors/readers for more resources

The dynamics of DNA in the presence of uniform damping and periodic force is studied. The damped and driven Joyeux-Buyukdagli model is used to investigate the formation of intrinsic localized modes (ILMs). Branches of ILMs are identified as well as their orbital stabilities. A study of the effect of inhomogeneity introduced into the DNA lattice and its ability to control chaotic behavior is conducted. It is seen that a single defect in the chain can induce synchronized spatiotemporal patterns, despite the fact that the entire set of oscillators and the impurity are chaotic when uncoupled. It is also shown that the periodic excitation applied on a specific site can drive the whole lattice into chaotic or regular spatial and temporal patterns.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available