4.8 Article

Transforming technical lignins to structurally defined star-copolymers under ambient conditions

Journal

GREEN CHEMISTRY
Volume 21, Issue 9, Pages 2478-2486

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9gc00835g

Keywords

-

Funding

  1. Knut and Alice Wallenberg Foundation
  2. Wallenberg Wood Science Center

Ask authors/readers for more resources

Transforming biomass derived components to materials with controlled and predictable properties is a major challenge. Current work describes the controlled synthesis of starcopolymers with functional and degradable arms from the Lignoboost (R) process. Macromolecular control is achieved by combining lignin fractionation and characterization with ring-opening copolymerization (ROCP). The cyclic monomers used are epsilon-caprolactone (epsilon CL) and a functional carbonate monomer, 2-allyloxymethyl-2-ethyltrimethylene carbonate (AOMEC). The synthesis is performed at ambient temperature, under bulk conditions, in an open flask, and the graft composition and allyl functionality distribution are controlled by the copolymerization kinetics. Emphasis is placed on understanding the initiation efficiency, structural changes to the lignin backbone and the final macromolecular architecture. The present approach provides a green, scalable and cost effective protocol to create well-defined functional macromolecules from technical lignins.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available