4.4 Article

Performance of fly ash based polymer gels for water reduction in enhanced oil recovery: Gelation kinetics and dynamic rheological studies

Journal

KOREAN JOURNAL OF CHEMICAL ENGINEERING
Volume 34, Issue 6, Pages 1638-1650

Publisher

KOREAN INSTITUTE CHEMICAL ENGINEERS
DOI: 10.1007/s11814-017-0071-8

Keywords

Fly Ash; Polymers; Reaction Order; Water Shutoff; Gelation; Oil Recovery

Funding

  1. Ministry of Education, Malaysia under Exploratory Research Scheme Grant [203/PJKIMIA/6730117]
  2. School of Chemical Engineering, Universiti Sains Malaysia

Ask authors/readers for more resources

The complexity of well and reservoir conditions demands frequent redesigning of water plugging polymer gels during enhanced oil recovery (EOR). In the present study, we developed coal fly ash (CFA) based gels from polyacrylamide (PAM) polymer and polyethyleneimine (PEI) crosslinker for water control in mature oil fields. The CFA acts as an inorganic additive to fine-tune gelation performance and rheological properties of PAM/PEI gel system. Hence, effects of various CFA (0.5 to 2 wt%), PAM (2 to 8.47 wt%) and PEI (0.3 to 1.04 wt%) concentrations on gelation kinetics and dynamic rheology of pure PAM/PEI gel and PAM/PEI-CFA composite gels were studied at a representative reservoir temperature of 90 degrees C. Experimental results reveal that gelation time of pure PAM/PEI gel increases with increasing CFA addition. Further observation demonstrates that increasing PAM and PEI concentrations decreases the gelation times of PAM/PEI-CFA composite gels. Gelation time was found to be within 3-120 hours. Understanding the property of reaction order enables better prediction of gelation time. Dynamic rheological data show that viscoelastic moduli (G' and G'') of various PAM/PEI-CFA composite gels improved better as compared to the pure PAM/PEI gel across the strain-sweep and frequency-sweep tests. SEM analysis of selected samples at 72 hours and 720 hours of gelation activity consolidated gelation kinetics and dynamic rheological results. These polymer gels are excellent candidates for sealing water thief zones in oil and gas reservoirs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available