4.7 Article

A novel CFHR1-CFHR5 hybrid leads to a familial dominant C3 glomerulopathy

Journal

KIDNEY INTERNATIONAL
Volume 92, Issue 4, Pages 876-887

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.kint.2017.04.025

Keywords

complement; complement factor H-related protein; C3 glomerulonephritis; dense deposit disease

Funding

  1. Indo-French Centre for the Promotion of Advanced Research

Ask authors/readers for more resources

The intrinsic similarity shared between the members of the complement factor H family, which comprises complement factor H and five complement factor H-related (CFHR) genes, leads to various recombination events. In turn these events lead to deletions of some genes or abnormal proteins, which are found in patients with atypical hemolytic uremic syndrome or C3 glomerulopathies. Here we describe a novel genetic rearrangement generated from a heterozygous deletion spanning 146 Kbp involving multiple CFHR genes leading to a CFHR1-R5 hybrid protein. This deletion was found in four family members presenting with a familial dominant glomerulopathy histologically classified as an overlap of dense deposit disease and C3 glomerulonephritis. Affected patients exhibited permanently low C3 and factor B levels and high amounts of activation fragments sC5b9 and Bb, indicating a systemic alternative pathway dysregulation. The abnormal protein, characterized by Western blot and immunoprecipitation, was shown to circulate in association with CFHR1 and CFHR2, attributable to its two N-terminal dimerization motifs. The presence of this protein is associated with a perturbation of Factor H activity on the C3 convertase decay. Thus, our study highlights the role of CFHRs in the physiopathology of C3 glomerulopathies and stresses the importance of screening CFHRs in all familial C3 glomerulopathies. Such hybrids described till now were always associated with familial forms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available