4.6 Article

Facile silicone oil-coated hydrophobic surface for surface enhanced Raman spectroscopy of antibiotics

Journal

RSC ADVANCES
Volume 9, Issue 25, Pages 14109-14115

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9ra00817a

Keywords

-

Funding

  1. National Natural Science Foundation of China [61675071, 61405062]
  2. Guangdong Provincial Science Fund for Distinguished Young Scholars [2018B030306015]
  3. Pearl River Nova Program of Guangzhou [201710010010]
  4. Guangdong Innovative Research Team Program [201001D00104799318, 2011D039]
  5. Natural Science Fund of Guangdong province [2018B030306015, 2014A030313445]
  6. Joint International Research Laboratory of Optical Information
  7. Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province (Shenzhen University)
  8. open fund of State Key Laboratory of Modern Optical Instrumentation of Zhejiang University [MOIKF201801]

Ask authors/readers for more resources

Surface-enhanced Raman scattering (SERS) technique has emerged as a potentially powerful tool for the detection of trace amounts of environmental contamination and pollutants such as various antibiotics and their active metabolites in the surface aquatic ecosystem (drinking water). In this study, we report the detection method for ciprofloxacin and norfloxacin analytes, two largely used antibiotics in the world, at a very low detection concentration based on the enrichment and efficient delivery of analytes after the evaporation of the solvent on slippery-SERS substrates. The slippery-SERS substrates were fabricated in a very efficient and cost effective way by simply spin-coating the silicone oil onto the widely used glass slides followed by annealing. The analyte particles with gold nanorods (GNRs) were efficiently delivered to the active site by evaporating the aqueous solvent on the slippery surface via the suppression of the coffee ring effect caused by the smooth contraction motion of the base contact radius of the droplet without any pinning. Thus, the detection limits of ciprofloxacin and norfloxacin analytes were reduced to 0.01 ppm, which is the lowest limit of detection achieved by any SERS technique. Finally, this study suggests that the fabricated silicone oil-coated slippery surface and GNRs based combinational approach for the SERS detection technique might be a powerful strategy for the reliable detection of the aqueous pollutant analytes even at very low concentrations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available