3.8 Proceedings Paper

Effects of cesium-substituted silicotungstic acid doped with polybenzimidazole membrane for the application of medium temperature polymer electrolyte fuel cells

Publisher

E D P SCIENCES
DOI: 10.1051/e3sconf/20198301008

Keywords

-

Categories

Funding

  1. JSPS [18H03841]
  2. AUN/SEED-Net (JICA)
  3. Grants-in-Aid for Scientific Research [18H03841] Funding Source: KAKEN

Ask authors/readers for more resources

Inorganic-organic composite membranes were prepared by using partly cesium-substituted silicotungstic acid (CHS-WSiA) and polybenzimidazole (PBI, MRS0810H) for medium temperature polymer electrolyte fuel cells (MT-PEFCs). Cesium hydrogen sulfate (CsHSO4, CHS) and silicotungstic acid (H4SiW12O40, WSiA) were milled to obtain 0.5CHS-0.5WSiA composites by dry and wet mechanical millings. N,N-dimethylacetamide (DMAc) was used as a disperse medium in the preparation of the inorganic solid acids by wet mechanical milling and also a casting agent for fabrication of membrane. Finally, flexible and homogeneous composite membranes with several phosphoric acid doping levels (PADLs) were obtained. The wet mechanical milling using DMAc was found to effectively promote good substitution of H+ ion in WSiA by Cs+ ion of CHS and promoted the formation of smaller grain sizes of composites, compared with dry milling. A high maximum power density of 378 mWcm(-2) and a good constant current stability test were obtained from a single cell test using the PBI composite membrane containing 20 wt% of 0.5CHS-0.5WSiA from wet milling and phosphoric acid doping level (PADL) of 8 mol, at 150 degrees C under an anhydrous condition. Wet milling CHS-WSiA crystallites were highly dispersed in PBI to give homogenized membranes and played a significant role in the enhancemance of acidity by increasing the number of proton sites in the electrolyte membrane. After the addition of CHS-WSiA into PBI membrane, the acid and water retention properties were improved and incorporated as new proton conduction path by adsorbing phosphoric acid in these composite electrolyte membranes. These observations suggest that composite membranes with 8 mol of PADL are good promising PA doped-membranes with effective electrochemical properties for the medium temperature fuel cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available