4.5 Article

Assessing the performance of structure-from-motion photogrammetry and terrestrial LiDAR for reconstructing soil surface microtopography of naturally vegetated plots

Journal

EARTH SURFACE PROCESSES AND LANDFORMS
Volume 41, Issue 3, Pages 308-322

Publisher

WILEY
DOI: 10.1002/esp.3787

Keywords

photogrammetry; Structure-from-Motion; SfM; LiDAR; TLS; soil microtopography; DEM; soil erosion

Ask authors/readers for more resources

Soil microtopography is a property of critical importance in many earth surface processes but is often difficult to quantify. Advances in computer vision technologies have made image-based three-dimensional (3D) reconstruction or Structure-from-Motion (SfM) available to many scientists as a low cost alternative to laser-based systems such as terrestrial laser scanning (TLS). While the performance of SfM at acquiring soil surface microtopography has been extensively compared to that of TLS on bare surfaces, little is known about the impact of vegetation on reconstruction performance. This article evaluates the performance of SfM and TLS technologies at reconstructing soil microtopography on 6m x 2m erosion plots with vegetation cover ranging from 0% to 77%. Results show that soil surface occlusion by vegetation was more pronounced with TLS compared to SfM, a consequence of the single viewpoint laser scanning strategy adopted in this study. On the bare soil surface, elevation values estimated with SfM were within 5mm of those from TLS although long distance deformations were observed with the former technology. As vegetation cover increased, agreement between SfM and TLS slightly degraded but was significantly affected beyond 53% of ground cover. Detailed semivariogram analysis on meter-square-scale surface patches showed that TLS and SfM surfaces were very similar even on highly vegetated plots but with fine scale details and the dynamic elevation range smoothed out with SfM. Errors in the TLS data were mainly caused by the distance measurement function of the instrument especially at the fringe of occlusion regions where the laser beam intersected foreground and background features simultaneously. From this study, we conclude that a realistic approach to digitizing soil surface microtopography in field conditions can be implemented by combining strengths of the image-based method (simplicity and effectiveness at reconstructing soil surface under sparse vegetation) with the high accuracy of TLS-like technologies. Copyright (c) 2015 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available