4.8 Article

A highly flexible and multifunctional strain sensor based on a network-structured MXene/polyurethane mat with ultra-high sensitivity and a broad sensing range

Journal

NANOSCALE
Volume 11, Issue 20, Pages 9949-9957

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9nr00488b

Keywords

-

Funding

  1. National Natural Science Foundation of China [51702084, 31600753]
  2. Natural Science Foundation of Hebei Province [E2018202179]

Ask authors/readers for more resources

Flexible and multifunctional strain sensors with superior properties including high sensitivity, low detection limits, and a wide sensing range are always in high demand for wearable electronics. However, it remains a big challenge to fully satisfy the aforementioned requirements. In particular, there is always a trade-off between high sensitivity and wide sensing range. Here, we developed a multifunctional strain sensor based on a network-structured MXene/polyurethane mat (network-M/P mat) and well balanced the relationship between the sensitivity and sensing range by rationally designing the morphology and microstructures of the sensing device. The network-structured polyurethane mat (network-P mat) was fabricated through a facile and scalable electrospinning technique. The highly conductive MXene sheets were decorated onto the network-P mat through hydrogen bonding or electrostatic interactions. The obtained highly flexible and stretchable network-M/P mat exhibited a superior comprehensive sensing performance that was characterized by high sensitivity (gauge factor up to 228), a low limit of detection (0.1%), a large and tunable sensing range (up to 150%), excellent stability (over 3200 cycles), and multiple functions (lateral strain, vertical pressure, bending and subtle vibration). Based on its superior performance, the network-M/P mat-based strain sensor can detect a full range of body actions and subtle physiological signals (e.g. respirations and pulse waves), demonstrating great potential for applications in artificial electronic skin and wearable health detectors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available