4.6 Article

Fermionization of bosons in a flat band

Journal

PHYSICAL REVIEW B
Volume 99, Issue 17, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.99.174418

Keywords

-

Funding

  1. National Science Foundation [PHY-1607611]
  2. UMass Amherst

Ask authors/readers for more resources

Strongly interacting bosons that live in a lattice with degeneracy in its lowest-energy band experience frustration that can prevent the formation of a Bose-Einstein condensate. Such systems form an ideal playground to investigate spin-liquid behavior. We use the variational principle and the Chern-Simons technique of fermionization of hard-core bosons on the kagome lattice to find that below lattice filling fraction nu = 1/3 the system favors a topologically ordered chiral spin-liquid state that is gapped in bulk, spontaneously breaks time-reversal symmetry, and supports massless chiral bosonic edge mode. We construct the many-body variational wave function of the state and show that the corresponding energy coincides with the energy of the flat band. This result proves that the ground state of the system cannot stabilize a Bose condensate below nu = 1/3. The fermionization and variational scheme we outline apply to any non-Bravais lattice. We distinguish between the roles played by the Chern-Simons gauge field in lattices with a flat band and those exhibiting a moatlike dispersion (which is degenerate along a closed contour in the reciprocal space). We also suggest experimental probes to differentiate the proposed ground state from a condensate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available