4.6 Article

Kaposi's Sarcoma-Associated Herpesvirus Utilizes and Manipulates RNA N6-Adenosine Methylation To Promote Lytic Replication

Journal

JOURNAL OF VIROLOGY
Volume 91, Issue 16, Pages -

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JVI.00466-17

Keywords

KSHV; N-6-adenosine methylation; RNA splicing; lytic replication

Categories

Funding

  1. National Institute of Dental and Craniofacial Research of the National Institutes of Health [R56DE023912]
  2. CWRU/UH Center for AIDS Research through NIH [P30 AI036219]

Ask authors/readers for more resources

N-6-adenosine methylation (m(6)A) is the most common posttranscriptional RNA modification in mammalian cells. We found that most transcripts encoded by the Kaposi's sarcoma-associated herpesvirus (KSHV) genome undergo m6A modification. The levels of m(6)A-modified mRNAs increased substantially upon stimulation for lytic replication. The blockage of m(6)A inhibited splicing of the pre-mRNA encoding the replication transcription activator (RTA), a key KSHV lytic switch protein, and halted viral lytic replication. We identified several m(6)A sites in RTA pre-mRNA crucial for splicing through interactions with YTH domain containing 1 (YTHDC1), an m6A nuclear reader protein, in conjunction with serine/arginine-rich splicing factor 3 (SRSF3) and SRSF10. Interestingly, RTA induced m(6)A and enhanced its own pre-mRNA splicing. Our results not only demonstrate an essential role of m(6)A in regulating RTA pre-mRNA splicing but also suggest that KSHV has evolved a mechanism to manipulate the host m(6)A machinery to its advantage in promoting lytic replication. IMPORTANCE KSHV productive lytic replication plays a pivotal role in the initiation and progression of Kaposi's sarcoma tumors. Previous studies suggested that the KSHV switch from latency to lytic replication is primarily controlled at the chromatin level through histone and DNA modifications. The present work reports for the first time that KSHV genome-encoded mRNAs undergo m(6)A modification, which represents a new mechanism at the posttranscriptional level in the control of viral replication.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available