4.7 Article

Sulfur and Nitrogen Co-Doped Graphene Quantum Dots as a Fluorescent Quenching Probe for Highly Sensitive Detection toward Mercury Ions

Journal

ACS APPLIED NANO MATERIALS
Volume 2, Issue 2, Pages 790-798

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsanm.8b02010

Keywords

infrared-assisted heating; graphene quantum dots; fluorescence quenching; mercury detection; sulfur doping; nitrogen doping

Funding

  1. Ministry of Science and Technology of Taiwan [MOST 105-2628-E-155-002-MY3, MOST 105-2221-E-155-014-MY3]
  2. Chang Gung Memorial Hospital, Linkou, Taiwan (Chang Gung Medical Foundation, Taiwan) [CMRPD2E0082]
  3. Nano Material Technology Development Program through the National Research Foundation of Korea [R2011-003-2009]

Ask authors/readers for more resources

Sulfur and nitrogen codoped graphene quantum dots (SN-GQDs) were synthesized through an efficient infrared (IR)-assisted pyrolysis of glucose, urea, and ammonia sulfate at 260 degrees C. These served as a highly selective probe for the sensing of Hg2+ ions in an aqueous solution. The IR technique can also prepare N-doped graphene quantum dots (N-GQDs), which have been compared with SN-GQDs for their fluorescence (FL) quenching sensitivities by Hg2+ ions. The FL intensities of both GQDs show decreasing functions of concentration of Hg2+ ions within the entire concentration ranges of 10 ppb-10 ppm. The sensitivity of SN-GQD is 4.23 times higher than that of N-GQD, based on the calculation of the Stern-Volmer equation. One interband gap structure of SN-GQDs for the detection of mercury ions is proposed. The S doping can coordinate with phenolic groups on the edge of SN-GQDs (i.e., the formation of (CxO)(2)Hg2+) and induce the cutting off or alleviation of photon injection paths, thereby leading to significant FL quenching. This work proves that SN-GQD offers sufficient sensitivity for probing the quality of drinking water to ensure that it contains less than 10 ppb of Hg2+ ions, as per the World Health Organization standard.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available