4.7 Article

Partial melting of thickened continental crust in central Tibet: Evidence from geochemistry and geochronology of Eocene adakitic rhyolites in the northern Qiangtang Terrane

Journal

EARTH AND PLANETARY SCIENCE LETTERS
Volume 414, Issue -, Pages 30-44

Publisher

ELSEVIER
DOI: 10.1016/j.epsl.2015.01.007

Keywords

Tibetan Plateau; adakite; geochemistry; partial melting; northern Qiangtang Terrane

Funding

  1. Strategic Priority Research Program (B) of the Chinese Academy of Sciences [XDB03010600]
  2. GIGCAS 135 project of the Guangzhou Institute of Geochemistry [Y234021001]
  3. State Key Laboratory of Isotope Geochemistry [SKLIG-RC-12-01]

Ask authors/readers for more resources

The composition of the deep crust is a key to understanding the formation of the low-velocity zone in the middle to lower crust of the Tibetan Plateau. The Suyingdi rhyolites exposed in the northern Qiangtang Terrane have high Sr (296-384 ppm) and low Y (5.81-7.93 ppm), with therefore high Sr/Y ratios (42-56), showing geochemical features of adakitic rocks. Zircon U-Pb dating yields an eruption age of 38.2 +/- 0.8 Ma (MSWD = 0.78). These adakitic rhyolites are high-I( calc-alkaline in composition, displaying a weakly peraluminous character. They have low MgO content (0.20-0.70 wt.%) and Mg-# values (24-39), as well as low Sc (2.25-2.76 ppm), Cr (8-14 ppm), Co (1.6-3.5 ppm) and Ni (2-3 ppm) concentrations. The rocks are LREE-enriched ((La/Yb)(N) = 50-62) and display weakly negative Eu anomalies (Eu/Eu* = 0.82-0.95) and pronounced negative Nb and Ta anomalies. They have low initial (Sr-87/Sr-86)(i); ratios (0.707860 to 0.708342) and enriched Nd isotopic compositions with epsilon(Nd)(t) values ranging from -8.4 to -5.0, which are indistinguishable from those of Cenozoic potassic and ultra-potassic lavas exposed in northern Tibet. Their much higher SiO2 and lower Fe2O3 contents, yet similar MgO, Cr, Co, Ni, and Mg-# values to the potassic and ultra-potassic lavas, however, indicate that the rhyolites are unlikely to have formed by fractional crystallization of these lavas. Because of their low Nb/Ta ratios and similar Sr-Nd isotopic compositions to granulite xenoliths within the Cenozoic potassic rocks, we infer that the Suyingdi adakitic rhyolites were most likely produced by partial melting of a thickened lower crust in the garnet stability field. The magma source is most likely dominated by granulite fades metabasalts and clay-poor metamorphosed sedimentary rocks which indicate that the lower crust of northern Tibet is heterogeneous. In combination with data from previously-reported peraluminous and metaluminous adakitic rocks in the same region, the age and petrogenesis of the Suyingdi adakitic rhyolites suggest that the low-velocity zone in the deep crust of central and northern Tibet was most likely the result of partial melting of thickened crust. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available