4.3 Article

Determining bacterial and host contributions to the human salivary metabolome

Journal

JOURNAL OF ORAL MICROBIOLOGY
Volume 11, Issue 1, Pages -

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/20002297.2019.1617014

Keywords

NMR spectroscopy; metabolomics; saliva; oral microbiome

Categories

Funding

  1. Biotechnology and Biological Sciences Research Council [BB/M015211/1]
  2. BBSRC [1723122] Funding Source: UKRI

Ask authors/readers for more resources

Background: Salivary metabolomics is rapidly advancing. Aim and methods: To determine the extent to which salivary metabolites reflects host or microbial metabolic activity whole-mouth saliva (WMS), parotid saliva (PS) and plasma collected contemporaneously from healthy volunteers were analysed by H-1-NMR spectroscopy. Spectra underwent principal component analysis and k-means cluster analysis and metabolite quantification. WMS samples were cultured on both sucrose and peptide-enriched media. Correlation between metabolite concentration and bacterial load was assessed. Results: WMS contained abundant short-chain fatty acids (SCFAs), which were minimal in PS and plasma. WMS spectral exhibited greater inter-individual variation than those of PS or plasma (6.7 and 3.6 fold, respectively), likely reflecting diversity of microbial metabolomes. WMS bacterial load correlated strongly with SCFA levels. Additional WMS metabolites including amines, amino acids and organic acids were positively correlated with bacterial load. Lactate, urea and citrate appeared to enter WMS via PS and the circulation. Urea correlated inversely with WMS bacterial load. Conclusions: Oral microbiota contribute significantly to the WMS metabolome. Several WMS metabolites (lactate, urea and citrate) are derived from the host circulation. WMS may be particularly useful to aid diagnosis of conditions reflective of dysbiosis. WMS could also complement other gastrointestinal fluids in future metabolomic studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available