4.6 Article

Mussel-inspired coatings with tunable wettability, for enhanced antibacterial efficiency and reduced bacterial adhesion

Journal

JOURNAL OF MATERIALS CHEMISTRY B
Volume 7, Issue 21, Pages 3438-3445

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9tb00534j

Keywords

-

Funding

  1. FU Berlin Graduate School Fluorine as a Key Element'' - German Science Foundation (DFG) [GRK 1582]
  2. China Scholarship Council

Ask authors/readers for more resources

Over the last few decades, there has been a tremendous increase in research on antibacterial surface coatings as an alternative strategy against bacterial infections. Although there are several examples of effective strategies to prevent bacterial adhesion, the effect of the wetting properties on the coating was rarely considered as a crucial factor. Here we report an in-depth study on the effect of extreme wettability on the antibacterial efficiency of a silver nanoparticles ( AgNPs)-based coating. By controlling surface polymerization of mussel-inspired dendritic polyglycerol ( MI-dPG) and post-functionalization, surfaces with wetting properties ranging from superhydrophilic to superhydrophobic were fabricated. Subsequently, AgNPs were embedded into the coatings by applying in situ reduction using the free catechols-moieties present in the MI-dPG coating. The resulting polymer coatings exhibited excellent antibacterial ability against planktonic Escherichia coli ( E. coli) DH5a and Staphylococcus aureus ( S. aureus) SH1000. The antibacterial efficiency of the coatings was analyzed by using inductively coupled plasma mass spectrometry ( ICP-MS) and bacterial viability tests. Furthermore, the antifouling properties of the coatings in relation to the antibacterial properties were evaluated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available