4.6 Article

A Taxonomy of Traffic Forecasting Regression Problems From a Supervised Learning Perspective

Journal

IEEE ACCESS
Volume 7, Issue -, Pages 68185-68205

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/ACCESS.2019.2917228

Keywords

Traffic forecasting; supervised learning; machine learning; deep learning; intelligent transportation systems

Funding

  1. European Union [769142]
  2. Marie Sklodoska-Curie [665959]

Ask authors/readers for more resources

One contemporary policy to deal with traffic congestion is the design and implementation of forecasting methods that allow users to plan ahead of time and decision makers to improve traffic management. Current data availability and growing computational capacities have increased the use of machine learning (ML) to address traffic prediction, which is mostly modeled as a supervised regression problem. Although some studies have presented taxonomies to sort the literature in this field, they are mostly oriented to classify the ML methods applied and a little effort has been directed to categorize the traffic forecasting problems approached by them. As far as we know, there is no comprehensive taxonomy that classifies these problems from the point of view of both traffic and ML. In this paper, we propose a taxonomy to categorize the aforementioned problems from both traffic and a supervised regression learning perspective. The taxonomy aims at unifying and consolidating categorization criteria related to traffic and it introduces new criteria to classify the problems in terms of how they are modeled from a supervised regression approach. The traffic forecasting literature, from 2000 to 2019, is categorized using this taxonomy to illustrate its descriptive power. From this categorization, different remarks are discussed regarding the current gaps and trends in the addressed traffic forecasting area.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available