4.4 Article

A Simulation Method for Non-Gaussian Rough Surfaces Using Fast Fourier Transform and Translation Process Theory

Journal

Publisher

ASME
DOI: 10.1115/1.4037793

Keywords

rough surface simulation; non-Gaussian; FFT; translation process theory

Funding

  1. National Basic Research Program of China (973) [2015CB057303]
  2. National Natural Science Foundation of China [51275268]

Ask authors/readers for more resources

The simulated rough surface with desired parameters is widely used as an input for the numerical simulation of tribological behavior such as the asperity contact, lubrication, and wear. In this study, a simulation method for generating non-Gaussian rough surfaces with desired autocorrelation function (ACF) and spatial statistical parameters, including skewness (Ssk) and kurtosis (Sku), was developed by combining the fast Fourier transform (FFT), translation process theory, and Johnson translator system. The proposed method was verified by several numerical examples and proved to be faster and more accurate than the previous methods used for the simulation of non-Gaussian rough surfaces. It is convenient to simulate the non-Gaussian rough surfaces with various types of ACFs and large autocorrelation lengths. The significance of this study is to provide an efficient and accurate method of non-Gaussian rough surfaces generation to numerically simulate the tribological behavior with desired rough surface parameters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available