4.5 Article

Establishment of novel therapy to reduce progression of myopia in rats with experimental myopia by fibroblast transplantation on sclera

Journal

Publisher

WILEY
DOI: 10.1002/term.2275

Keywords

myopia; rat; form deprivation myopia; fibroblast; collagen 1; sclera; transplantation

Funding

  1. Japan Society for the Promotion of Science, Tokyo, Japan [15H04993, 25861622]
  2. Grants-in-Aid for Scientific Research [25861622, 15H04993, 15K15629] Funding Source: KAKEN

Ask authors/readers for more resources

Myopia is one of the most common visual disorders, and is characterized by a progressive axial elongation of the eye. Several methods have been tried to reduce the progression of axial elongation and myopia, but there are still no well-accepted procedures. We hypothesized that transplantation of fibroblasts on the sclera would lead to the synthesis of collagen fibrils on the sclera and reinforce it, and reduce the degree of axial elongation of eyes with form deprivation myopia. To examine this, we developed a form deprivation myopia model in albino Wistar rats and examined the effects of human fibroblasts (hFbs) transplantation on the sclera in the progression of myopia and axial elongation. We found that the form deprivation by eyelid suture induced a myopic shift and axial elongation associated with a thinner sclera and smaller-diameter collagen fibrils in Wistar rats. We also found that the transplanted hFbs synthesized type 1 collagen fibrils on the rat sclera, and these eyes with form deprivation had significantly reduced ocular elongation and myopic shift than the eyes without hFbs transplantation. Some of the synthesized collagen fibrils migrated into the sclera and had a bundle-like appearance and a stripe-like pattern, indicating they had mature characteristics. These findings suggest that the rat sclera was reinforced by the newly synthesized collagen fibrils and the axial elongation was reduced. These results can provide important information for the development of a therapy targeting myopia in humans. Copyright (C) 2017 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available