3.8 Article

A foot drop compensation device based on surface multi-field functional electrical stimulation-Usability study in a clinical environment

Publisher

SAGE PUBLICATIONS INC
DOI: 10.1177/2055668319862141

Keywords

Usability; foot drop; functional electrical stimulation (FES); neuroprosthesis; multi-field electrodes; stroke

Funding

  1. European Regional Development Funds through the Interreg Sudoe Program [SOE1/P1/F0370]

Ask authors/readers for more resources

Introduction Functional electrical stimulation applies electrical pulses to the peripheral nerves to artificially achieve a sensory/motor function. When applied for the compensation of foot drop it provides both assistive and therapeutic effects. Multi-field electrodes have shown great potential but may increase the complexity of these systems. Usability aspects should be checked to ensure their success in clinical environments. Methods We developed the Fesia Walk device, based on a surface multi-field electrode and an automatic calibration algorithm, and carried out a usability study to check the feasibility of integrating this device in therapeutic programs in clinical environments. The study included 4 therapists and 10 acquired brain injury subjects (8 stroke and 2 traumatic brain injury). Results Therapists and users were very satisfied with the device according to the Quebec User Evaluation of Satisfaction with Assistive Technology scale, with average scores of 4.1 and 4.2 out of 5, respectively. Therapists considered the Fesia Walk device as excellent according to the System Usability Scale with an average score of 85.6 out of 100. Conclusions This study showed us that it is feasible to include surface multi-field technology while keeping a device simple and intuitive for successful integration in common neurorehabilitation programs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available