4.5 Article

TOC: Localizing Wireless Rechargeable Sensors with Time of Charge

Journal

ACM TRANSACTIONS ON SENSOR NETWORKS
Volume 11, Issue 3, Pages -

Publisher

ASSOC COMPUTING MACHINERY
DOI: 10.1145/2700257

Keywords

Design; Algorithms; Performance; Wireless rechargeable sensor networks; localization

Funding

  1. NSFC [61222305, 61228302]
  2. 111 Program [B07031, NCET-11-0445]
  3. Division Of Computer and Network Systems
  4. Direct For Computer & Info Scie & Enginr [0845994] Funding Source: National Science Foundation

Ask authors/readers for more resources

The wireless rechargeable sensor network is a promising platform for long-term applications such as inventory management, supply chain monitoring, and so on. For these applications, sensor localization is one of the most fundamental challenges. Different from a traditional sensor node, a wireless rechargeable sensor has to be charged above a voltage level by the wireless charger in order to support its sensing, computation, and communication operations. In this work, we consider the scenario where a mobile charger stops at different positions to charge sensors and propose a novel localization design that utilizes the unique Time of Charge (TOC) sequences among wireless rechargeable sensors. Specifically, we introduce two efficient region dividing methods, Internode Division and Interarea Division, to exploit TOC differences from both temporal and spatial dimensions to localize individual sensor nodes. To further optimize the system performance, we introduce both an optimal charger stop planning algorithm for the single-sensor case and a suboptimal charger stop planning algorithm for the generic multisensor scenario with a provable performance bound. We have extensively evaluated our design by both testbed experiments and large-scale simulations. The experiment and simulation results show that by as less as five stops, our design can achieve sub-meter accuracy and the performance is robust under various system conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available