4.6 Article

Can reactions follow non-traditional second-order saddle pathways avoiding transition states?

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 21, Issue 24, Pages 12837-12842

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9cp02431j

Keywords

-

Funding

  1. SERB, Department of Science and Technology, India [EMR/2017/004843]

Ask authors/readers for more resources

We report here an ab initio (CASSCF/6-31+G*) trajectory simulation study on the mechanisms of the denitrogenation of 1-pyrazoline and its subsituted analogue that reveals reaction pathways via a high energy second-order saddle (SOS) region. This mechanism involves the molecule adopting a five-membered planar structure contrary to the traditional boat-like transition state. The SOS offers a trifurcation point where a pathway branches into three, different from the single pathway associated with a transitions state. We observe that the molecules following the SOS path exhibit distinctive dynamical features and form products with high translational energies and low rotational energies compared to those following the traditional pathways. In addition, the SOS pathway provides an alternative mechanism for the formation of stereo-selective products. Interestingly, although the reaction proceeds via a trimethylene diradical intermediate, the simulations show that the product cyclopropane is formed with a major single inversion of the configuration consistent with experimental observations. They also reveal mechanisms that do not follow the minimum energy paths and exhibit non-statistical dissociation dynamics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available