4.7 Article

Weak Shock Propagation with Accretion. III. A Numerical Study on Shock Propagation and Stability

Journal

ASTROPHYSICAL JOURNAL
Volume 878, Issue 2, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.3847/1538-4357/ab1ea2

Keywords

black hole physics; hydrodynamics; methods: analytical; shock waves; supernovae: general

Funding

  1. Gordon and Betty Moore Foundation [GBMF5076]
  2. NASA [PF6-170170]
  3. Moore Distinguished Scholar program at Caltech
  4. Simons Foundation
  5. theoretical astrophysics group

Ask authors/readers for more resources

Core-collapse supernovae span a wide range of energies, from much less than to much greater than the binding energy of the progenitor star. As a result, the shock wave generated from a supernova explosion can have a wide range of Mach numbers. In this paper, we investigate the propagation of shocks with arbitrary initial strengths in polytropic stellar envelopes using a suite of spherically symmetric hydrodynamic simulations. We interpret these results using the three known self-similar solutions for this problem: the Sedov-Taylor blast-wave describes an infinitely strong shock, and the self-similar solutions from Coughlin et al. (Papers I and II) describe a weak and infinitely weak shock (the latter being a rarefaction wave). We find that shocks, no matter their initial strengths, evolve toward either the infinitely strong or infinitely weak self-similar solutions at sufficiently late times. For a given density profile, a single function characterizes the long-term evolution of a shock's radius and strength. However, shocks with strengths near the self-similar solution for a weak shock (from Paper I) evolve extremely slowly with time. Therefore, the self-similar solutions for infinitely strong and infinitely weak shocks are not likely to be realized in low-energy stellar explosions, which will instead retain a memory of the shock strength initiated in the stellar interior.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available