4.7 Article

A carob-inspired nanoscale design of yolk-shell Si@void@TiO2-CNF composite as anode material for high-performance lithium-ion batteries

Journal

DALTON TRANSACTIONS
Volume 48, Issue 20, Pages 6846-6852

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9dt01130g

Keywords

-

Funding

  1. National Natural Science Foundation of China [21878189]
  2. Shenzhen Science and Technology Project Program [KQJSCX20170327151152722, JCYJ20160422112012739]
  3. National Natural Science Foundation of SZU [827-000039]

Ask authors/readers for more resources

Silicon (Si) is an attractive anode material for lithium-ion batteries due to its high gravimetric and volumetric capacity. However, the challenges for Si anodes are low conductivity, unstable solid electrolyte interphase (SEI) layer and big volume expansion during the charge/discharge process. Inspired by the structure of carob, we propose a yolk-shell structured Si anode which tackles all the problems mentioned above. The non-filling Si clusters protected by atomic layer-deposited TiO2 are embedded in highly conductive one-dimensional carbon nanofibers, which leaves enough space for the expansion and contraction of Si during lithiation/delithiation. Moreover, the SEI layer will form at the outer surface of carbon nanofibers instead of on individual Si nanoparticles and can remain stable and spatially confined. Therefore, the yolk-shell composite electrode exhibits good electrochemical performance and reversible capacities of 1156 mA h g(-1) at a current density of 600 mA g(-1) after 500 cycles and 485 mA h g(-1) at the current density of 9600 mA g(-1) after 2000 cycles are obtained.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available