4.6 Article

Novel two-dimensional molybdenum carbides as high capacity anodes for lithium/sodium-ion batteries

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 7, Issue 19, Pages 12145-12153

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9ta02650a

Keywords

-

Funding

  1. National Key Research and Development Program of China [2017YFB0701700]
  2. National Natural Science Foundation of China [51871009]

Ask authors/readers for more resources

Searching for high performance electrode materials is one of the key factors for next generation renewable energy technologies. Here, based on the structure of two dimensional (2D) transition metal carbides (MXenes) Mo2C, we report novel 2D MoxCy (x, y = 1 or 2) phases with great potential as anode materials for both lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) through a first principles swarm structural search. The predicted 2D MoC and MoC2 monolayers exhibit great stabilities, metallic conductivities, and excellent electrode performances. Interestingly, the structure of the MoC2 monolayer is composed of C-2 dimers without metal atoms directly exposed on the surface, suggesting that the surface functionalization occurring in MXenes can be effectively avoided, which is beneficial for maintaining good stability of the anode materials. Furthermore, the MoC2 monolayer exhibits superior LIB and SIB performances with high theoretical storage capacities (893.5 and 446.9 mA h g(-1)) and small diffusion energy barriers (0.15 and 0.23 eV) for Li and Na atoms, respectively. These intriguing results demonstrate the robust applicability of the predicted monolayers as ideal anode materials for both LIBs and SIBs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available