4.6 Article

Microwave growth and tunable photoluminescence of nitrogen-doped graphene and carbon nitride quantum dots

Journal

JOURNAL OF MATERIALS CHEMISTRY C
Volume 7, Issue 18, Pages 5468-5476

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9tc00233b

Keywords

-

Funding

  1. Ministry of Science and Technology of Taiwan [MOST 105-2628-E-155-002-MY3, MOST 105-2221-E-155-014-MY3]

Ask authors/readers for more resources

Tunable photoluminescent nitrogen-doped graphene and graphitic carbon nitride (g-C3N4) quantum dots are synthesized via a facile solid-phase microwave-assisted (SPMA) technique utilizing the pyrolysis of citric acid and urea precursors. The atomic ratio, surface functionalization, and atomic structure of as-prepared quantum dots strongly depend on the ratio of citric acid to urea. The quantum dots have a homogeneous particle size and tend to form a circle and/or ellipse shape to minimize the edge free energy. The atomic ratio of surface nitrogen to carbon (N/C) in the quantum dots can reach as high as 1.74, among the highest values reported in the literature. The SPMA technique is capable of producing high-quality quantum dots with photoluminescence (PL) emission at various wavelengths on a pilot scale. The atomic structures of the N-doped graphene and g-C3N4 quantum dots are explored using molecular dynamics simulations. Increasing the urea concentration increases the tendency of in-plane N (i.e., quaternary N) substitution over that of other amino functionalizations, such as pyrrolic and pyridinic N. The PL emission can be precisely tuned via a one-step SPMA method by adjusting the precursor composition. A high quantum yield of 38.7% is achieved with N-doped graphene quantum dots, indicating the substantial influence of the N- and O-rich edge groups on the enhancement of PL efficiency. A bandgap structure is proposed to describe the interstate (*-) transition of quantum dots. This work introduces a novel approach for engineering the chemical composition and atomic structure of graphene and g-C3N4 quantum dots, facilitating their research and applications in optical, electronic, and biomedical devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available