4.7 Article

Microwave synthesis of copper catalysts onto reduced graphene oxide sheets for non-enzymatic glucose oxidation

Journal

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jtice.2016.12.038

Keywords

Copper catalysts; Glucose oxidation; Graphene oxide sheets; Non-enzymatic catalysis; Microwave synthesis

Funding

  1. Ministry of Science and Technology (Taiwan, R.O.C.) [MOST 105-2628-E-155-002-MY3, MOST 105-2221-E-155-014-MY3]
  2. Chang Gung Memorial Hospital, Linkou, Taiwan (Chang Gung Medical Foundation, Taiwan) [CMRPD2E0081]

Ask authors/readers for more resources

An efficient microwave-assisted synthesis (MS) method to synthesize highly crystalline Cu nanocrystals onto reduced graphene oxide (rGO) sheets for glucose oxidation reaction (GOR) has been investigated. The mass density of Cu nanocrystals onto rGO sheets, ranged from 22.6 to 42.8 wt%, is selected as a controlling factor in determining the catalytic activity toward GOR in alkali electrolyte. The cyclic voltammetry measurement reveals an obvious signature of GOR on the Cu(III)/Cu(II) active surface. Through an appropriate loading of Cu crystals, the Cu-rGO catalysts exhibits an improved performance toward the GOR, including excellent sensitivity, wide detection range, fast response, and superior selectivity. The enhanced performance can be ascribed to a synergetic effect that consists of small crystalline size, uniform dispersion, and two-dimensional conductive support, imparting high accessibility to non-enzymatic catalysis of glucose. Herein the rGO sheets works as a two-dimensional conductive scaffold, capable of rapidly conducting electron and well dispersing Cu nanocrystals. The injection amperometric investigation confirms the highest selectivity of 284 mA g(-1) mu M-1 is attained, according to a linear regression plot of current response versus glucose concentration, i.e., 0-1 mM. Accordingly, the robust design of Cu-rGO catalyst electrode can serve as a feasible candidate for non-enzymatic glucose biosensor. (C) 2017 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available