4.6 Article

Optimal a priori balance in the design of controlled experiments

Publisher

WILEY
DOI: 10.1111/rssb.12240

Keywords

Causal inference; Controlled experimentation; Covariate balance; Functional analysis; Mixed integer programming; Semidefinite programming

Ask authors/readers for more resources

We develop a unified theory of designs for controlled experiments that balance baseline covariates a priori (before treatment and before randomization) using the framework of minimax variance and a new method called kernel allocation. We show that any notion of a priori balance must go hand in hand with a notion of structure, since with no structure on the dependence of outcomes on baseline covariates complete randomization (no special covariate balance) is always minimax optimal. Restricting the structure of dependence, either parametrically or non-parametrically, gives rise to certain covariate imbalance metrics and optimal designs. This recovers many popular imbalance metrics and designs previously developed ad hoc, including randomized block designs, pairwise-matched allocation and rerandomization. We develop a new design method called kernel allocation based on the optimal design when structure is expressed by using kernels, which can be parametric or non-parametric. Relying on modern optimization methods, kernel allocation, which ensures nearly perfect covariate balance without biasing estimates under model misspecification, offers sizable advantages in precision and power as demonstrated in a range of real and synthetic examples. We provide strong theoretical guarantees on variance, consistency and rates of convergence and develop special algorithms for design and hypothesis testing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available