4.6 Article

Physico-Chemical Modeling of a Lithium-Ion Battery: An Ageing Study with Electrochemical Impedance Spectroscopy

Journal

BATTERIES & SUPERCAPS
Volume 2, Issue 6, Pages 530-540

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/batt.201900011

Keywords

double layer; electrochemical impedance spectroscopy; graphite; lithium-ion batteries; nickel manganese cobalt oxide

Funding

  1. Battery LabFactory Braunschweig

Ask authors/readers for more resources

Electrochemical Impedance Spectroscopy measurements and simulations are performed on a nickel manganese cobalt oxide (NMC)/graphite pouch cell. A physico-chemical continuum battery model is extended by a physical ageing model including a Solid Electrolyte Interphase. The model assumes a loss of electrochemically active surface area at anode and cathode as well as a growth of solid electrolyte interphase (SEI) layer thickness. These ageing parameters have been adjusted with an algorithm to achieve agreement between simulated and measured spectra. The results for a 28 mAh pouch cell show that the ageing model is suitable to correlate the change of the impedance spectrum with the degree of degradation of the cell. In detail, SEI thickness is shown to increase by 45 nm, while the anode and cathode loose 20 % and 57 % of their electrochemically active surface area, respectively. In addition, deviating measurement conditions and the end of life of the cell can be indicated by the parameter identification algorithm. Furthermore, it is demonstrated, that the change of the high and low frequency semicircles can be assigned to the anode SEI and cathode respectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available