4.6 Article

Interfacially driven transport theory: a way to unify Marangoni and osmotic flows

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 21, Issue 19, Pages 10114-10124

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9cp00999j

Keywords

-

Ask authors/readers for more resources

We show that the solvent behaviour in both diffusio-osmosis and Marangoni flow can be derived from a simple model of colloid-interface interactions. We demonstrate that the direction of the flow is regulated by a single value of the attractive parameter covering the purely repulsive and attractiverepulsive interaction cases. The proposed universality between diffusio-osmosis and Marangoni flow is extended further to include diffusio-phoresis. In particular, an object immersed to a colloidal solution moves towards the low concentration of the colloidal particles in the case of colloid-interface repulsion and towards the high concentration of the colloidal particles in the case of colloid-interface attraction. The approach combines the methods of fluid dynamics, molecular physics and transport phenomena and provides a tractable explanation of how the colloid-interface interactions affect the momentum balance and the transport phenomena (interfacially driven transport).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available