4.6 Article

Degradation and erosion mechanisms of bioresorbable porous acellular vascular grafts: an in vitro investigation

Journal

JOURNAL OF THE ROYAL SOCIETY INTERFACE
Volume 14, Issue 132, Pages -

Publisher

ROYAL SOC
DOI: 10.1098/rsif.2017.0102

Keywords

growth and remodelling; continuum mechanics; tissue-engineered vascular grafts; degradation; erosion

Funding

  1. National Heart, Lung, and Blood Institute (NHLBI) of the NIH [NIH/1R21HL124479-01]

Ask authors/readers for more resources

A fundamental mechanism of in situ tissue regeneration from biodegradable synthetic acellular vascular grafts is the effective interplay between graft degradation, erosion and the production of extracellular matrix. In order to understand this crucial process of graft erosion and degradation, we conducted an in vitro investigation of grafts (n = 4 at days 1, 4, 7, 10 each) exposed to enzymatic degradation. Herein, we provide constitutive relationships for mass loss and mechanical properties based on much-needed experimental data. Furthermore, we formulate amathematicalmodel to provide a physics-based framework for understanding graft erosion. A novel finding is that despite their porous nature, grafts lost mass exponentially via surface erosion demonstrating a 20% reduction in outer diameter and no significant change in apparent density. A diffusion based, concentration gradient-driven mechanistic model of mass loss through surface erosion was introduced which can be extended to an in vivo setting through the use of two degradation parameters. Furthermore, notably, mechanical properties of degrading grafts did not scale with mass loss. Thus, we introduced a damage function scaling a neo-Hookean model to describe mechanical properties of the degrading graft; a refinement to existing mass-dependent growth and remodelling (G&R) models. This framework can be used to improve accuracy of well-established G&R theories in biomechanics; tools that predict evolving structure-function relationships of neotissues and guide graft design.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available