4.6 Article

Effect of Li concentration-dependent material properties on diffusion induced stresses of a Sn anode

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 21, Issue 18, Pages 9581-9589

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9cp00559e

Keywords

-

Funding

  1. National Research Foundation of Korea (NRF) under the Ministry of Science [NRF-2014R1A4A1003712, NRF-2016R1A2B3011473]

Ask authors/readers for more resources

Sn is one of the promising Li ion battery anode materials with high theoretical capacity and mechanical properties that allow for effective relaxation of Li diffusion-induced stresses. Sn is a low melting point metal with a low modulus and strength and has the ability to relax stresses via plasticity and creep deformations. In this study, concentration-dependent material properties are used in numerical simulations to model the Li diffusion-induced stress evolution in Sn micropillars. Simulation results using concentration-dependent material properties resulted in a completely different failure mode in comparison to that of concentration-independent simulation results. Tensile hoop stress needed for crack propagation was analyzed to be at the core for concentration-independent material properties, and switched to being at the surface for concentration-dependent simulation results. In addition, by incorporating these maximum tensile DIS results, the critical size for the failure of Sn micropillars was determined to be 5.3 mm at C/10 charging rate. This was then correlated with experimental observations, where fracture occurred in Sn micropillars with sizes larger than 6 mm, while 4.4 mm sized Sn micropillars survived the lithiation cycle.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available