4.0 Article

Modelling terrain erosion susceptibility of logged and regenerated forested region in northern Borneo through the Analytical Hierarchy Process (AHP) and GIS techniques

Journal

GEOENVIRONMENTAL DISASTERS
Volume 6, Issue 1, Pages -

Publisher

SPRINGERNATURE
DOI: 10.1186/s40677-019-0124-x

Keywords

Geo-environmental variable; Terrain susceptibility; AHP; GIS; Borneo

Funding

  1. Sarawak Energy Berhad, Malaysia [RD01/2014(C)]

Ask authors/readers for more resources

This research examines the susceptibility of logged and regenerated forest region to erosion through the application of the analytical hierarchy process (AHP) and geographical information systems (GIS). In order to estimate terrain erosion susceptibility, ten geo-environmental variables were taken into account as possible factors relevant to terrain erosion. They are slope, aspect, relative relief, slope length and steepness (LS) factor, curvature, landforms, topographic wetness index (TWI), stream power index (SPI), stream head density, and land use/land cover. Pairwise comparison matrixes were generated to derive the weightages and ratings of each variable and their classes. These were integrated to generate the terrain erosion susceptibility index (TESI) map. Among the variables used in the analysis the land use/land cover, slope, SPI, stream head density, and LS factor were shown to have high contribution towards terrain erosion susceptibility. The areas with a concave slopes >25 degrees and high relative relief, LS factor, TWI, and stream head densities were found to be more susceptible to erosion such as gullying or landslides. The conversion of TESI into terrain erosion susceptibility zonation (TESZ) map shown that 25% of the total area is highly susceptible to erosion. Among this, 10% of the area possesses a very high vulnerability to landslides and gullying or soil slips and these areas coincide with logging roads and skidder trails. Linear regression analysis between TESI and TESZ with spatial distribution of mean annual rainfall in the region does not show any significant relationships (p>0.10). However, high rainfall triggers rapid downstream movement of unsupported slopes in the region. The terrain erosion susceptibility zonation map expresses the realistic condition of logged terrain matching with field observations in the area in terms of erosion. The results can serve as basic data for future development programs in the region, in any projects where the terrain susceptibility is critical by planning infrastructure to avoid high risk zones.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available