4.6 Article

Constraining the Dark-matter Halo Mass of Isolated Low-surface-brightness Galaxies

Journal

ASTROPHYSICAL JOURNAL LETTERS
Volume 879, Issue 1, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.3847/2041-8213/ab2916

Keywords

galaxies: dwarf; galaxies: evolution; galaxies: halos; X-rays: galaxies; X-rays: general; Xrays: ISM

Funding

  1. ESA Member States
  2. NASA
  3. Smithsonian Institution

Ask authors/readers for more resources

Recent advancements in the imaging of low-surface-brightness objects revealed numerous ultra-diffuse galaxies in the local universe. These peculiar objects are unusually extended and faint: their effective radii are comparable to the Milky Way, but their surface brightnesses are lower than that of dwarf galaxies. Their ambiguous properties motivate two potential formation scenarios: the failed Milky Way, and the dwarf galaxy scenario. In this Letter, for the first time, we employ X-ray observations to test these formation scenarios on a sample of isolated, low-surface-brightness galaxies (LSBGs). Because hot gas X-ray luminosities correlate with the dark-matter halo mass, failed Milky-Way-type galaxies, which reside in massive dark-matter halos, are expected to have significantly higher X-ray luminosities than dwarf galaxies, which reside in low-mass dark-matter halos. We perform X-ray photometry on a subset of LSBGs identified in the Hyper Suprime-Cam Subaru survey, utilizing the XMM-Newton XXL North survey. We find that none of the individual galaxies show significant X-ray emission. By co-adding the signal of individual galaxies, the stacked galaxies remain undetected and we set an X-ray luminosity upper limit of L0.3-1 (2 keV) <= 6.2 x 10(37) (d/65 Mpc)(2) erg s(-1) for an average isolated LSBG. This upper limit is about 40 times lower than that expected in a galaxy with massive dark-matter halo, implying that the majority of isolated LSBGs reside in dwarf-size dark-matter halos.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available