4.1 Article

Benzydamine N-oxygenation as an index for flavin-containing monooxygenase activity and benzydamine N-demethylation by cytochrome P450 enzymes in liver microsomes from rats, dogs, monkeys, and humans

Journal

DRUG METABOLISM AND PHARMACOKINETICS
Volume 30, Issue 1, Pages 64-69

Publisher

JAPANESE SOC STUDY XENOBIOTICS
DOI: 10.1016/j.dmpk.2014.09.006

Keywords

FMO3; FMO1; CYP2D6; NADPH; Preheating of liver microsomes

Funding

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan [25460198]
  2. Grants-in-Aid for Scientific Research [25460198] Funding Source: KAKEN

Ask authors/readers for more resources

Benzydamine is an anti-inflammatory drug that undergoes flavin-containing monooxygenase (FMO)dependent metabolism to benzydamine N-oxide; however, benzydamine N-demethylation is also catalyzed by liver microsomes. In this study, benzydamine N-oxygenation and N-demethylation mediated by liver microsomes from rats, dogs, monkeys, and humans were characterized comprehensively. Values of the maximum velocity/Michaelis constant ratio for benzydamine N-oxygenation by liver microsomes from dogs and rats were higher than those from monkeys and humans, despite roughly similar rates of N-demethylation in the four species. Benzydamine N-oxygenation by liver microsomes was extensively suppressed by preheating liver microsomes at 45 degrees C for 5 min or at 37 degrees C for 5-10 min without NADPH, and benzydamine N-demethylation was strongly inhibited by 1-aminbobenztriazole. Liver microsomal benzydamine N-oxygenation was inhibited by dimethyl sulfoxide and methimazole, whereas N-demethylation was inhibited by quinidine. High benzydamine N-oxygenation activities of recombinant human FMO1 and FMO3 and human kidney microsomes were observed at pH 8.4, whereas N-demethylation by cytochrome P450 2D6 was faster at pH 7.4. These results suggest that benzydamine N-oxygenation and N-demethylation are mediated by FMO1/3 and P450s, respectively, and that the contribution of FMO to metabolic eliminations of new drug candidates might be underestimated under certain experimental conditions suitable for P450 enzymes. Copyright (C) 2014, The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available