4.1 Article

A Spatially Explicit Comparison of Quantitative and Categorical Modelling Approaches for Mapping Seabed Sediments Using Random Forest

Journal

GEOSCIENCES
Volume 9, Issue 6, Pages -

Publisher

MDPI
DOI: 10.3390/geosciences9060254

Keywords

marine habitat mapping; benthic habitat mapping; grain size modelling; spatial autocorrelation; multiscale; marine geology

Funding

  1. ArcticNet, project Integrated Marine Geoscience to Guide Environmental Impact Assessment and Sustainable Development in Frobisher Bay, Nunavut

Ask authors/readers for more resources

Seabed sediment composition is an important component of benthic habitat and there are many approaches for producing maps that convey sediment information to marine managers. Random Forest is a popular statistical method for thematic seabed sediment mapping using both categorical and quantitative supervised modelling approaches. This study compares the performance and qualities of these Random Forest approaches to predict the distribution of fine-grained sediments from grab samples as one component of a multi-model map of sediment classes in Frobisher Bay, Nunavut, Canada. The second component predicts the presence of coarse substrates from underwater video. Spatial and non-spatial cross-validations were conducted to evaluate the performance of categorical and quantitative Random Forest models and maps were compared to determine differences in predictions. While both approaches seemed highly accurate, the non-spatial cross-validation suggested greater accuracy using the categorical approach. Using a spatial cross-validation, there was little difference between approaches-both showed poor extrapolative performance. Spatial cross-validation methods also suggested evidence of overfitting in the coarse sediment model caused by the spatial dependence of transect samples. The quantitative modelling approach was able to predict rare and unsampled sediment classes but the flexibility of probabilistic predictions from the categorical approach allowed for tuning to maximize extrapolative performance. Results demonstrate that the apparent accuracies of these models failed to convey important differences between map predictions and that spatially explicit evaluation strategies may be necessary for evaluating extrapolative performance. Differentiating extrapolative from interpolative prediction can aid in selecting appropriate modelling methods.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available