4.6 Review

Biomechanics of the human intervertebral disc: A review of testing techniques and results

Journal

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jmbbm.2017.01.037

Keywords

Intervertebral disc; Mechanical testing; Anulus fibrosus; Nucleus pulposus; Endplate; Material properties

Funding

  1. EPSRC, First Grant Scheme [EP/M022242/1]
  2. Royal British Legion Centre for Blast Injury Studies at Imperial College London
  3. Royal British Legion
  4. EPSRC [EP/M022242/1] Funding Source: UKRI
  5. Engineering and Physical Sciences Research Council [EP/M022242/1] Funding Source: researchfish

Ask authors/readers for more resources

Many experimental testing techniques have been adopted in order to provide an understanding of the biomechanics of the human intervertebral disc (IVD). The aim of this review article is to amalgamate results from these studies to provide readers with an overview of the studies conducted and their contribution to our current understanding of the biomechanics and function of the IVD. The overview is presented in a way that should prove useful to experimentalists and computational modellers. Mechanical properties of whole IVDs can be assessed conveniently by testing 'motion segments' comprising two vertebrae and the intervening IVD and ligaments. Neural arches should be removed if load-sharing between them and the disc is of no interest, and specimens containing more than two vertebrae are required to study 'adjacent level' effects. Mechanisms of injury (including endplate fracture and disc herniation) have been studied by applying complex loading at physiologically-relevant loading rates, whereas mechanical evaluations of surgical prostheses require slower application of standardised loading protocols. Results can be strongly influenced by the testing environment, preconditioning, loading rate, specimen age and degeneration, and spinal level. Component tissues of the disc (anulus fibrosus, nucleus pulposus, and cartilage endplates) have been studied to determine their material properties, but only the anulus has been thoroughly evaluated. Animal discs can be used as a model of human discs where uniform non-degenerate specimens are required, although differences in scale, age, and anatomy can lead to problems in interpretation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available