4.6 Article

Silencing Huwe1 reduces apoptosis of cortical neurons exposed to oxygen-glucose deprivation and reperfusion

Journal

NEURAL REGENERATION RESEARCH
Volume 14, Issue 11, Pages 1977-1985

Publisher

WOLTERS KLUWER MEDKNOW PUBLICATIONS
DOI: 10.4103/1673-5374.259620

Keywords

nerve regeneration; ischemic stroke; oxygen-glucose deprivation and reperfusion; ischemia/reperfusion; cortical neuron; ubiquitin proteasome system; Huwe1; apoptosis; therapeutic targets; cell culture; cell death; neural regeneration

Funding

  1. National Natural Science Foundation of China [81771642]
  2. New Bud Research Foundation of West China Second University Hospital of China

Ask authors/readers for more resources

HECT, UBA and WWE domain-containing 1 (Huwe1), an E3 ubiquitin ligase involved in the ubiquitin-proteasome system, is widely expressed in brain tissue. Huwe1 is involved in the turnover of numerous substrates, including p53, Mcl-1, Cdc6 and N-myc, thereby playing a critical role in apoptosis and neurogenesis. However, the role of Huwe1 in brain ischemia and reperfusion injury remains unclear. Therefore, in this study, we investigated the role of Huwe1 in an in vitro model of ischemia and reperfusion injury. At 3 days in vitro, primary cortical neurons were transduced with a control or shRNA-Huwe1 lentiviral vector to silence expression of Huwe1. At 7 days in vitro, the cells were exposed to oxygen-glucose deprivation for 3 hours and reperfusion for 24 hours. To examine the role of the c-Jun N-terminal kinase (JNK)/p38 pathway, cortical neurons were pretreated with a JNK inhibitor (SP600125) or a p38MAPK inhibitor (SB203508) for 30 minutes at 7 days in vitro, followed by ischemia and reperfusion. Neuronal apoptosis was assessed by TUNEL assay. Protein expression levels of JNK and p38MAPK and of apoptosis-related proteins (p53, Gadd45a, cleaved caspase-3, Bax and Bcl-2) were measured by western blot assay. Immunofluorescence labeling for cleaved caspase-3 was performed. We observed a significant increase in neuronal apoptosis and Huwe1 expression after ischemia and reperfusion. Treatment with the shRNA-Huwe1 lentiviral vector markedly decreased Huwe1 levels, and significantly decreased the number of TUNEL-positive cells after ischemia and reperfusion. The silencing vector also downregulated the pro-apoptotic proteins Bax and cleaved caspase-3, and upregulated the anti-apoptotic proteins Gadd45a and Bcl-2. Silencing Huwe1 also significantly reduced p-JNK levels and increased p-p38 levels. Our findings show that downregulating Huwe1 affects the JNK and p38MAPK signaling pathways as well as the expression of apoptosis-related genes to provide neuroprotection during ischemia and reperfusion. All animal experiments and procedures were approved by the Animal Ethics Committee of Sichuan University, China in January 2018 (approval No. 2018013).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available