4.6 Article

Mechanical characterization and finite element implementation of the soft materials used in a novel anthropometric test device for simulating underbody blast loading

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.jmbbm.2017.06.021

Keywords

-

Funding

  1. Army Research Laboratory [W911NF-14-2-0023]

Ask authors/readers for more resources

Soft materials (e.g. polymers) are widely used in biomechanical devices to represent the nonlinear viscoelastic properties inherent in biological soft tissues. Knowledge of their mechanical properties is used to inform design choices and develop accurate finite element (FE) models of human surrogates. The goal of this study was to characterize the behavior of eight polymeric materials used in the design of a novel anthropomorphic test device (ATD) and implement these materials in an FE model of the ATD. Tensile and compressive tests at strain rates ranging from 0.01 s(-1) to 1000 s(-1) were conducted on specimens from each material. Stress-strain relationships at discrete strain rates were used to define strain rate-dependent hyper-elastic material models in a commercial finite element solver. Then, the material models were implemented into an FE model of the ATD. The performance of the material models in the FE model was evaluated by simulating experiments that were conducted on the ATD lower limb. The material characterization tests revealed viscoelastic strain rate-dependent properties in the flesh and compliant elements of the ATD. Higher modulus polymers exhibited rate-dependent, strain-hardening properties. A strong agreement was seen between the material model simulations and corresponding experiments. In component simulations, the materials performed well and the model reasonably predicted the forces observed in experiments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available