3.8 Article

Fractal Topological Analysis for 2D Binary Digital Images

Journal

MATHEMATICS IN COMPUTER SCIENCE
Volume 13, Issue 1-2, Pages 11-20

Publisher

SPRINGER BASEL AG
DOI: 10.1007/s11786-018-0386-9

Keywords

Digital image; Region-adjacency tree; Fractal topology; Homological spanning forest

Funding

  1. Spaniard research projects - (Ministerio de Economia y Competitividad) COFNET (Event-based Cognitive Visual and Auditory Sensory Fusion) [TEC2016-77785-P]
  2. Spaniard research projects - (FEDER funds) COFNET (Event-based Cognitive Visual and Auditory Sensory Fusion) [TEC2016-77785-P]
  3. TOP4COG (Topological Recognition of 4D Digital Images via HSF model) (AEI/FEDER, UE) [MTM2016-81030-P]

Ask authors/readers for more resources

Fractal dimension is a powerful tool employed as a measurement of geometric aspects. In this work we propose a method of topological fractal analysis for 2D binary digital images by using a graph-based topological model of them, called Homological Spanning Forest (HSF, for short). Defined at interpixel level, this set of two trees allows to topologically describe the (black and white) connected component distribution within the image with regards to the relationship to be surrounded by. This distribution is condensed into a rooted tree, such that its nodes are connected components determined by some special sub-trees of the previous HSF and the levels of the tree specify the degree of nesting of each connected component. We ask for topological auto-similarity by comparing this topological description of the whole image with a regular rooted tree pattern. Such an analysis can be used to directly quantify some characteristics of biomedical images (e.g. cells samples or clinical images) that are not so noticeable when using geometrical approaches.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available