3.8 Article

Exogenous application of gibberellic acid mitigates drought-induced damage in spring wheat

Journal

ACTA AGROBOTANICA
Volume 72, Issue 2, Pages -

Publisher

POLSKIE TOWARZYSTWO BOTANICZNE
DOI: 10.5586/aa.1776

Keywords

osmotic stress; reactive oxygen species; antioxidant; phytohormones; glyoxalase

Funding

  1. Japan Student Services Organization (JASSO) Japan

Ask authors/readers for more resources

Drought stress is a major problem in wheat production but it could be managed by using various exogenous protectants such as gibberellic acid (GA). Although GA is a plant growth hormone, it shows a potential to protect the plant in stress conditions. To investigate the possible role of GA in mitigating drought stress, we treated wheat (Triticum aestivum 'BARI Gom-21') seedlings with a GA spray under semihydroponic conditions. In the experiment, the combined effect of GA and drought stress (induced by 12% polyethylene glycol) was studied after 48 h and 72 h. In the absence of exogenous GA, drought-stressed wheat seedlings showed various physiological and biochemical changes in a time-dependent manner. Malondialdehyde (MDA), hydrogen peroxide (H2O2) and free proline (Pro) concentrations were increased, whereas catalase (CAT) and ascorbate peroxidase (APX) activities were reduced under drought stress. Gibberellic acid played a role in restoring the ascorbate (AsA) level, decreased the reduced/oxidized glutathione (GSH/GSSG) ratio and reduced monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR) activities. Gibberellic acid significantly affected the glyoxalase system. Under drought stress, the methylglyoxal (MG) concentration was increased but GA application stimulated glyoxalase I (Gly I) and glyoxalase II (Gly II) activities to protect the wheat seedlings against stress. The study concluded that the severity of drought stress in wheat depends on the growth stage and it increases with an increase in the duration of stress, whereas exogenous GA helped the seedlings to survive by upregulating antioxidant defense mechanisms and the glyoxalase system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available