4.6 Article

Multiphase Porous Electrode Theory

Journal

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
Volume 164, Issue 11, Pages E3291-E3310

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.0171711jes

Keywords

-

Funding

  1. Samsung-MIT Program for Materials Design in Energy Applications
  2. D3BATT program of the Toyota Research Institute

Ask authors/readers for more resources

Porous electrode theory, pioneered by John Newman and collaborators, provides a macroscopic description of battery cycling behavior, rooted in microscopic physical models. Typically, the active materials are described as solid solution particles with transport and surface reactions driven by concentration fields, and the thermodynamics are incorporated through fitting of the open circuit potential. However, this approach does not apply to phase separating materials, for which the voltage is an emergent property of inhomogeneous concentration profiles, even in equilibrium. Here, we present a general framework, multiphase porous electrode theory, based on nonequilibrium thermodynamics and implemented in an open-source software package called MPET. Cahn-Hilliard-type phase field models are used to describe the active materials with suitably generalized models of interfacial reaction kinetics. Classical concentrated solution theory is implemented for the electrolyte phase, and Newman's porous electrode theory is recovered in the limit of solid solution active materials with Butler-Volmer kinetics. More general, quantum-mechanical models of faradaic reactions are also included, such as Marcus-Hush-Chidsey kinetics for electron transfer at electrodes, extended for concentrated solutions. The full model and implementation are described, and a variety of example calculations are presented to illustrate the novel features of the software compared to existing battery models. (C) The Author(s) 2017. Published by ECS. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available