4.6 Article

Hydrophobicity and Improved Localized Corrosion Resistance of Grain Boundary Etched Stainless Steel in Chloride-Containing Environment

Journal

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
Volume 164, Issue 2, Pages C61-C65

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.1271702jes

Keywords

-

Ask authors/readers for more resources

Localized corrosion of stainless steels by chloride ions in seawater leads to metal degradation while fouling of marine organisms increases the occurrence of localized corrosion. We describe a simple method to increase hydrophobicity of austenitic stainless steel using grain boundary etching that can also inhibit adhesion of bio-organisms present in seawater as well as increase the localized corrosion resistance of stainless steel in chloride-containing aqueous environments. This paper describes the corrosion behavior of stainless steel as a result of grain boundary etching to achieve hydrophobicity. Potentiostatic polarization on stainless steel 316L in a nitric acid solution at an anodic potential of 1.3 V vs. saturated calomel electrode (SCE) results in a grain boundary etched structure and a Cr-and Mo-rich passive film as confirmed by scanning electron microscopy and X-ray photoelectron spectroscopy. This modified stainless steel 316L surface exhibits enhanced corrosion resistance to a 0.6 M sodium chloride solution. Specifically, potentiodynamic polarization studies indicate that the breakdown potential increases and the sample-to-sample variability decreases. The modified surfaces show a narrow range of breakdown potentials (0.96 to 1.05 V vs. SCE) compared to as-received stainless steel 316L (0.32 to 0.86 V vs. SCE). (C) The Author(s) 2017. Published by ECS. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available