4.8 Article

Solving the Rubik's cube with deep reinforcement learning and search

Journal

NATURE MACHINE INTELLIGENCE
Volume 1, Issue 8, Pages 356-363

Publisher

SPRINGERNATURE
DOI: 10.1038/s42256-019-0070-z

Keywords

-

Ask authors/readers for more resources

The Rubik's cube is a prototypical combinatorial puzzle that has a large state space with a single goal state. The goal state is unlikely to be accessed using sequences of randomly generated moves, posing unique challenges for machine learning. We solve the Rubik's cube with DeepCubeA, a deep reinforcement learning approach that learns how to solve increasingly difficult states in reverse from the goal state without any specific domain knowledge. DeepCubeA solves 100% of all test configurations, finding a shortest path to the goal state 60.3% of the time. DeepCubeA generalizes to other combinatorial puzzles and is able to solve the 15 puzzle, 24 puzzle, 35 puzzle, 48 puzzle, Lights Out and Sokoban, finding a shortest path in the majority of verifiable cases. For some combinatorial puzzles, solutions can be verified to be optimal, for others, the state space is too large to be certain that a solution is optimal. A new deep learning based search heuristic performs well on the iconic Rubik's cube and can also generalize to puzzles in which optimal solvers are intractable.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available