4.6 Article

The Effect of Carbon Dioxide on the Cycle Life and Electrolyte Stability of Li-Ion Full Cells Containing Silicon Alloy

Journal

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
Volume 164, Issue 12, Pages A2527-A2533

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.1121712jes

Keywords

-

Ask authors/readers for more resources

Carbon dioxide is shown to be an effective additive to standard Li-ion electrolyte for extending the cycle life of full pouch cells containing an engineered silicon alloy. CO2 was introduced to pouch cells by adding a few milligrams of dry ice to cells before sealing. The cells contained composite negative electrodes formulated with 15 to 17 wt% of an engineered silicon alloy and a LiCoO2 positive electrode. Parasitic electrolyte reactions were measured in-situ by isothermal micro-calorimetry and high precision coulometry and compared to cells containing 1-fluoro ethylene carbonate (FEC). Extended cycling of cells containing CO2 were compared to cells containing FEC. Cell gas generation and gas consumption were measured by applying the Archimedes principle. A new approach using small tubes in pouch cells to differentiate volume changes from gassing and solid expansion is introduced. Cells with CO2 showed significantly lower parasitic thermal power, improved coulombic efficiency and better capacity retention compared to cells containing electrolytes with FEC. The gas generation/consumption experiments showed that Si alloy reacts with CO2 during cycling until it is fully consumed. Combining FEC and CO2 reduces the consumption rate of CO2. Microscopy of cross-sectioned cycled electrodes showed a thin SEI layer and minimal silicon alloy erosion. The combined work establishes CO2 as a powerful precursor to an effective SEI layer on silicon alloys. Finally, CO2 is shown to be an effective SEI former for graphite in EC-free electrolytes. (C) The Author(s) 2017. Published by ECS. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available