4.8 Article

Cable-like Ru/WNO@C nanowires for simultaneous high-efficiency hydrogen evolution and low-energy consumption chlor-alkali electrolysis

Journal

ENERGY & ENVIRONMENTAL SCIENCE
Volume 12, Issue 8, Pages -

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9ee01647c

Keywords

-

Funding

  1. National Natural Science Foundation of China [21671036, 21771033]
  2. Fundamental Research Funds for the Central Universities [2412018BJ001, 2412018ZD007, 2412018QD005]
  3. Opening Project of Key Laboratory of Polyoxometalate Science of the Ministry of Education [130014556]
  4. China Postdoctoral Science Foundation [2018M631849]
  5. Foundation of Jilin Educational Committee [JJKH20190268KJ]
  6. Scientific Development Project of Jilin Province [20190201206JC]

Ask authors/readers for more resources

The rational design of high-efficiency and stable hydrogen evolution electrocatalysts under the condition of strong alkali is the key issue for the combination of hydrogen production with low-energy consumption chlor-alkali electrolysis. Herein, ultra-small Ru nanoclusters anchored on WNO nanowires covered by few-layer N-doped carbon (named Ru/WNO@C) were synthesized through a simple pyrolysis method. We demonstrate a comprehensive understanding of the hydrogen evolution reaction (HER) performance of such cable-like Ru/WNO@C electrocatalysts by combining experimental and computational techniques. The optimal catalyst Ru/WNO@C (Ru wt% = 3.37%) delivers a record-low overpotential of 2 mV at a current density of 10 mA cm(-2), a low Tafel slope of 33 mV dec(-1), a high mass activity of 4095.6 mA mg(-1) at an overpotential of 50 mV, and long-term durability in 1 M KOH. The superior HER activity of Ru/WNO@C is revealed to be caused by two factors using density functional theory (DFT) calculations: a moderate H adsorption free energy (Delta G(H*) = -0.21 eV) and a rather low water dissociation barrier (Delta G(B) = 0.27 eV). Specifically, Ru/WNO@C (Ru wt% = 3.37%) shows more remarkable HER performance than industrial low carbon steel under a simulated chlor-alkali electrolyte at 90 degrees C, making it an efficient cathode candidate applied in chlor-alkali electrolysis. Finally, a homemade ionic membrane electrolyzer with a Ru/WNO@C (Ru wt% = 3.37%) (-)//RuO2/IrO2-coated Ti-mesh (+) couple presents a low cell voltage of 2.48 V at a current density of 10 mA cm(-2), which is 320 mV lower than the value for the low carbon steel (-)//RuO2/IrO2-coated Ti-mesh (+) (2.8 V) couple, exhibiting robust stability for 25 h. This work provides a meaningful reference for the design and fabrication of efficient and stable alkaline HER catalysts, and realizes high-efficiency hydrogen production and low-energy consumption chlor-alkali electrolysis at the same time.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available