4.7 Article

Synthesis and Properties of Ferrite-Based Nanoparticles

Journal

NANOMATERIALS
Volume 9, Issue 8, Pages -

Publisher

MDPI
DOI: 10.3390/nano9081079

Keywords

ferrite nanoparticles; crystal structure; phase transformations; magnetic structures; nanotechnologies

Funding

  1. MES RK state-targeted program Creation of radiation-resistant nanostructured materials for modern materials science, alternative energy, nano and microelectronics [BR05235921]

Ask authors/readers for more resources

The work is dedicated to the study of the structural and optical characteristics, as well as the phase transformations, of ferrite nanoparticles of CeO2-Fe2O3. To characterize the results obtained, the methods of scanning and transmission microscopy, X-ray diffraction (XRD) spectroscopy, and Mossbauer spectroscopy were applied. It was found that the initial nanoparticles are polycrystalline structures based on cerium oxide with the presence of X-ray amorphous inclusions in the structure, which are characteristic of iron oxide. The study determined the dynamics of phase and structural transformations, as well as the appearance of a magnetic texture depending on the annealing temperature. According to the Mossbauer spectroscopy data, it has been established that a rise in the annealing temperature gives rise to an ordering of the magnetic properties and a decrease in the concentration of cationic and vacancy defects in the structure. During the life test of synthesized nanoparticles as cathode materials for lithium-ion batteries, the dependences of the cathode lifetime on the phase composition of nanoparticles were established. It is established that the appearance of a magnetic component in the structure result in a growth in the resource lifetime and the number of operating cycles. The results show the prospects of using these nanoparticles as the basis for lithium-ion batteries, and the simplicity of synthesis and the ability to control phase transformations opens up the possibility of scalable production of these nanoparticles for cathode materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available