4.6 Article

Unimpeded migration of ions in carbon electrodes with bimodal pores at an ultralow temperature of-100 °C

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 7, Issue 27, Pages 16339-16346

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9ta03988k

Keywords

-

Funding

  1. National Key Research and Development Program of China [2017YFB0307001]
  2. National Natural Science Foundation of China [91648109, 51675236]

Ask authors/readers for more resources

The ability to rapidly charge (and discharge) energy storage devices at extremely low temperature (down to -100 degrees C) is critical for low-temperature applications such as high altitude exploration and space missions. Electric double-layer supercapacitors (EDLCs) are promising energy storage devices under these conditions. However, it is still a great challenge to obtain EDLCs with both high gravimetric/volumetric capacitance and good rate performance at such low temperatures. We found that, in carbon-based EDLCs, the poor performance at low temperature was mainly caused by the sluggish desolvation of ions at the pore openings and low ion migration within pores. Further, we discovered that there exists a minimum pore opening size for ion adsorption and an effect of pore size on rate performance. These findings enable us to envisage a rational pore structure with a special bimodal distribution of micropores and mesopores. In this work, we successfully synthesized high surface area activated carbon (AC) with a similar structure. Based on this AC, record gravimetric/volumetric capacitance (173 F g(-1) and 66 F cm(-3) at 10 mV s(-1) scan rate) and good rate performance (157 F g(-1) and 60 F cm(-3) at 100 mV s(-1) scan rate) were obtained at a temperature of -100 degrees C.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available