4.6 Article

Gaseous CO and toluene co-oxidation over monolithic core-shell Co3O4-based hetero-structured catalysts

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 7, Issue 27, Pages 16197-16210

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9ta03750k

Keywords

-

Funding

  1. National Natural Science Foundation of China [51878292, 51108187, 51672273, B5151050]
  2. Science and Technology Planning Project of the Guangdong Province of China [2015B0202236002]
  3. Guangdong Natural Science Foundation [2016A030311003]

Ask authors/readers for more resources

The inhibiting effects of using platinum group metal (PGM) catalysts are universal problems for the co-oxidation of CO and hydrocarbons (HCs), resulting in a higher temperature to handle CO and HCs pollutants. Herein, this work focuses on designing a series of Co3O4-based catalysts whose catalytic activities in the individual oxidation and co-oxidation of CO and toluene are comparable to Pt-based catalysts. The catalytic behaviors of CO and toluene oxidation over Pt/Al2O3 are mutually inhibited in the presence of CO and toluene, in which CO oxidation could improve catalytic toluene degradation over Co3O4-based catalysts, as its CO oxidation is negatively affected by toluene oxidation. In addition, under the coexistence of CO and toluene, the light-off temperature of toluene oxidation on both Co3O4-based and Pt-based catalysts consistently followed that of CO oxidation. Among all monolithic core-shell Co3O4-based catalysts, these catalysts introduced to different elements (Co, Mn and Cu) showed the distinct promotion of CO and toluene oxidation, and the Co3O4@Co3O4 catalyst exhibited the most outstanding catalytic performances for the individual oxidation and co-oxidation of CO and toluene. In addition, the physicochemical properties of core-shell hetero-structured catalysts are further characterized in detail by XRD, BET, SEM, TEM, H-2-TPR, XPS, O-2-TPD and Raman spectrometry. It was confirmed that the excellent performance of the Co3O4@Co3O4 catalyst is mainly associated with the surface area, surface oxygen vacancies and low-temperature reducibility, whose prominent oxygen vacancy and low-temperature reducibility are induced by the synergistic effect of different Co3O4 structures. In situ DRIFT spectroscopy confirmed that bidentate carbonate species and benzoate species were considered as a reaction intermediate species in CO and toluene oxidation, respectively. Moreover, there is a competitive adsorption-reaction on the active sites of Co3O4-based catalysts for CO and toluene, but the reaction mechanism of CO/toluene oxidation may be mutually independent under the coexistence of CO and toluene.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available