4.7 Article

Studies on the Electro-Impulse De-Icing System of Aircraft

Journal

AEROSPACE
Volume 6, Issue 6, Pages -

Publisher

MDPI
DOI: 10.3390/aerospace6060067

Keywords

aircraft; wing; system; ice; icing; deicing; ice mechanics; electro-impulse; coils; structural dynamics

Funding

  1. National Natural Science Foundation of China [51637002]
  2. State Grid Science and Technology Project: Research on numerical prediction technology of grid icing in micro-topography and micro-meteorological areas [521999180006]
  3. Fundamental Research Funds for the Central Universities [2019CDXYDQ0010]

Ask authors/readers for more resources

In order to solve the accidents caused by aircraft icing, electro-impulse de-icing technology was studied through numerical simulation and experimental verification. In addition, this paper analyzed in detail the influence of the number, placement arrangement, and starting time of pulse coils on the de-icing effect, which plays a guidance role in the design and installation of the subsequent electro-impulse de-icing system. In an artificial climate chamber, the new de-icing criteria were obtained by tensile test, and the platform for the electro-impulse de-icing system was built. Replacing the skin with an aluminum plate, an electro-impulse de-icing system with a single coil was used. A three-dimensional skin-ice layer model was established by using Solidworks software. The finite element method was adapted. Through comparison between the de-icing prediction results and the test results in the natural environment, it was proven that the calculation process of de-icing prediction was correct, which laid a theoretical foundation for the selection of the number, placement arrangement, and starting time of the pulse coils. Finally, in this paper, by choosing the leading edge of NACA0012 wing as the research object, the influence of the number, placement arrangement, and starting time of pulse coils on the de-icing effect was analyzed. The results show that to get a better de-icing effect, the electro-impulse de-icing system with two impulse coils should be selected. The two coils were installed in the central position of the top and bottom surfaces of the leading edge, respectively. In addition, one of the impulse coils started working 1200 mu s later than the other one.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available