4.1 Article

Lifetimes of Rogue Wave Events in Direct Numerical Simulations of Deep-Water Irregular Sea Waves

Journal

FLUIDS
Volume 4, Issue 2, Pages -

Publisher

MDPI
DOI: 10.3390/fluids4020070

Keywords

rogue waves; lifetimes; numerical simulations

Funding

  1. Russian Foundation for Basic Research [18-05-80019, 19-55-15005]
  2. Fundamental Research Programme Nonlinear Dynamics of the Russian Academy of Sciences

Ask authors/readers for more resources

The issue of rogue wave lifetimes is addressed in this study, which helps to detail the general picture of this dangerous oceanic phenomenon. The direct numerical simulations of irregular wave ensembles are performed to obtain the complete accurate data on the rogue wave occurrence and evolution. Purely collinear wave systems, moderately crested, and short-crested sea states have been simulated by means of the high-order spectral method for the potential Euler equations. As rogue waves are transient and poorly reflect the physical effects, we join instant abnormally high waves in close locations and close time moments to new objects, rogue events, which helps to retrieve the abnormal occurrences more stably and more consistently from the physical point of view. The rogue event lifetime probability distributions are calculated based on the simulated wave data. They show the distinctive difference between rough sea states with small directional bandwidth on one part, and small-amplitude sea states and short-crested states on the other part. The former support long-living rogue wave patterns (the corresponding probability distributions have heavy tails), though the latter possess exponential probability distributions of rogue event lifetimes and generally produce much shorter rogue wave events.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available